Water and the Electrical Conductivity of the Moon

Robert E. Grimm Southwest Research Institute

Harry Y. McSween, Jr. *University of Tennessee*

NASA Lunar Science Conference July, 2009

Lunar Electrical Conductivity: Experiment

- Transfer function between distant orbiter and surface magnetometer describes global induced dipole.
- Solve for spherically symmetric layered mantle conductivity.

Lunar Electrical Conductivity: Results

Solid-State Electrical Conduction

- Composition: point-defect chemistry.
 - Electron holes due to small polaron
 Fe_{Mg}* extensively researched for olivine. (e.g., Hirsch and Shankland 93)
 - Trivalent-cation substitution in pyroxene tetrahedral sites (e.g., Al_{Si}') forms charge-compensating polaron.
 - Protonahospaintanduse) to hydrogen defects: H₂O dissociation. (e.g., Karato, 2006)
- Temperature
 - Arrhenius activation energy: $\sigma = \sigma_0 \exp(-E_a/kT)$

Effect of Al₂O₃

- Early modeling using (anhydrous) olivine predicted mantle temps close to melting.
- Higher conductivity of aluminous orthopyroxene allows lower temperatures. (Heubner et al., 1979; Hood and Sonett, 1982).

Al₂O₃ Abundance

- Al₂O₃ limit in lunar mantle 3-5%.
- Pristine mantle ~50% opx, so 6.8% Al₂O₃ is 3.4% alumina in opx alone!
 - Conversely, minor plag and garnet could accommodate all inferred Al₂O₃ themselves.
- Recent modeling of lunar compositionconductivity (Khan et al., 2003) does not correctly incorporate Al substitution in opx.

Effect of H₂O

- Saal et al. (2008) used SIMS to measure 4–46 ppm H₂O in lunar volcanic glasses.
 - Modeled 745 ppm H₂O
 in mantle before diffusive degassing (260 ppm lower bound).

Wang et al. 2006 measured conductivity of 10⁻² S/m for olivine w/ 100 ppm H₂O at 1000°C.

 $\sigma = 1000 c_w^{0.67} \exp(-0.9 \text{ eV / kT})$

c_w in wt%, exponent 0.5-0.75 predicted from mass action for 2H ionization.

Lunar Conductivity Revisited

Lunar Conductivity Revisited

- 40 ppm H₂O in ol produces same solidus crossing as 6.8% Al₂O₃ in opx.
- Order-ofmagnitude lower mantle H₂O content than derived by Saal et al is acceptable.
 - Lower than terrestrial mantle.

Summary

- Early comparison of whole-moon electrical conductivity to lab measurements predicted near-melting in mantle.
- Aluminum impurities in orthopyroxene invoked to increase conductivity (lowers temps) but either too much needed or incorrectly modeled.
- Dissociated H₂O at tens of ppm is sufficient to maintain subsolidus internal temps.
- Verify with detailed composition/temperature modeling; next-generation lunar EM measurements.